
1 Introduction
In this note we will examine how aggregate estimators might lead to biases in the
estimates of the persistence of the underlying data generating process in the face of
cross-sectoral heterogeneity in the persistence of the individual price series. The note
expands upon the two-sector example in the paper and allows for correlation of the
errors across the cross-sectional units. We show that our results are robust. We will
first look at a general case, then a special two-sector case, and then a counter-example
provided by Charles Engel.

1.1 Aggregation Bias: The general case with n sectors and
cross correlations

In the general n-sector case, we have, if we index sectors by i:

xit = θixit−1 + eit
E(e2it) = σ2i

E(eitejt) = σij

where xit denotes the (log) of the relative price of the i’th cross-sectional unit. This
assumes an AR(1) structure but the results generalize to any AR processes. Relative
to the example we provide in the main paper this allows for covariances between the
innovations and for heterogeneity in the variance of the innovations.
We will assume, as is the realistic case for our purposes, that prices are positively

autocorrelated. Furthermore, we order the data such that:

0 < θ1 ≤ θ2 ≤ ... ≤ θn

It follows that:

σ2xi =
σ2i

1− θ2i

σxi,xj =
σij

1− θiθj

Let us now assume that θi is drawn from a distribution with mean θ and we wish
to estimate this mean persistence.

θ =
nX
i=1

θi
n
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The issue is how the estimate of the “mean” persistence would be affected by
cross-sectional aggregation. The cross-sectional aggregate is given by:

xt =
1

n

nX
i=1

xit

We will first derive the (asymptotics of the) least squares estimate of the persis-
tence of the aggregated process. The least squares estimate of the persistence will be
given by θa = σx,x−1/σ2x. Straightforward algebra gives us that:

σ2x =
1

n2

Ã
nX
i=1

Ã
σ2xi + 2

nX
j>i

σxi,xj

!!

σx,x−1 =
1

n2

Ã
nX
i=1

Ã
θiσ

2
xi
+

nX
j>i

(θi + θj) σxi,xj

!!
Hence, it follows that:

θa =

Pn
i=1

³
θiσ

2
xi
+
Pn

j>i (θi + θj) σxi,xj

´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ − θ +

Pn
i=1

³
θiσ

2
xi
+
Pn

j>i (θi + θj) σxi,xj

´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ +

Pn
i=1

³¡
θi − θ

¢
σ2xi +

Pn
j>i

£¡
θi − θ

¢
σxi,xj +

¡
θj − θ

¢
σxi,xj

¤´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ +

Pn
i=1

³
θi−θ
1−θ2i σ

2
i
+
Pn

j>i

³
θi−θ
1−θiθjσij +

θj−θ
1−θiθjσij

´´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
Therefore:

θa = θ +
∆Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´ (1)

∆ =
nX
i=1

Ã
θi − θ

1− θ2i
σ2
i
+

nX
j>i

µ
θi − θ

1− θiθj
σ
ij
+

θj − θ

1− θiθj
σ
ij

¶!
(2)

The sign of the bias is the sign of ∆. Determining this sign in general depends on
the covariances of the innovation terms, the pattern on heterogeneity in the persis-
tence and the variance of the innovations. However, as we will now show, although
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counterexamples can be constructed, the realistic cases give rise to a positive aggre-
gation bias.

Let us call i0 the index such that for all i < i0, θi < θ and θi0 ≥ θ. This index
exists since θ is a convex combination of the {θi}ni=1. We can now show that:

∆ ≥ 0⇔
nX
i=i0

Ã
θi − θ

1− θ2i
σ2
i
+
X
j>i

·
θi − θ

1− θiθj
σ
ij
+

θj − θ

1− θiθj
σ
ij

¸!

≥
i0−1X
i=1

Ã
θ − θi

1− θ2i
σ2
i
+
X
i0>j>i

·
θ − θi
1− θiθj

σ
ij
+

θ − θj
1− θiθj

σ
ij

¸!

We can spell out sufficient conditions for the bias to be positive:
If σ2

i
w σ2 and σ

ij
w χ ≥ 0 then the bias is positive.

Proof:
Since θ1 ≤ θ2 ≤ ... ≤ θn, we have 1

1−θ2i
≥ 1

1−θ2j
> 0 whenever i > j.

Hence
Pn

i=i0
θi−θ
1−θ2i ≥

Pi0−1
i=1

θ−θi
1−θ2i since

Pn
i=1

¡
θi − θ

¢
= 0 by definition of θ.

Similarly
P

i<j
i≥i0

h
θi−θ
1−θiθj +

θj−θ
1−θiθj

i
≥ P

i<j
j<i0

h
θ−θi
1−θiθj +

θ−θj
1−θiθj

i
for the same reason.

Therefore ∆ ≥ 0.

These conditions on the variance covariance matrix of the sectoral errors are close
to what we observe in the actual sectoral price data. This case is therefore the
empirically relevant case and the aggregation bias is positive.

Note that for the bias to be negative, we would need strong and systematic asym-
metries in the price data.
Necessary (and NOT sufficient) conditions would be: a) either that θ−θi

1−θiθj σij >
θ−θk
1−θkθlσlk at least for some i, j ∈ {1, .., i0 − 1} and for some k, l ∈ {i0, .., n} and σij > 0
and σ

lk
> 0; b) or that θ−θi

1−θiθjσij <
θ−θk
1−θkθlσlk at least for some i, j ∈ {1, .., i0 − 1} and

for some k, l ∈ {i0, .., n} and σ
ij
< 0 .

1.2 Special Cases

1.2.1 No cross-correlation of the innovation errors

Assuming that the errors are uncorrelated across sectors gives us immediately that:
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θa = θ +

Pn
i=1

³
θi−θ
1−θ2i σ

2
i
+
Pn

j>i

³
θi−θ
1−θiθj σij +

θj−θ
1−θiθjσij

´´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ +

Pn
i=1

³
θi−θ
1−θ2i σ

2
i

´
Pn

i=1

¡
σ2xi
¢ ≥ θ

where strict equality holds whenever there is cross sectoral heterogeneity. This follows
simply because, as explained above, the more persistent components receive a higher
weight in the averaged estimaor.

1.2.2 Two sectors

When there are just two sectors we can show immediately that the sign of the bias
is independent of the correlation of the innovations because:

θa = θ +

Pn
i=1

³
θi−θ
1−θ2i σ

2
i
+
Pn

j>i

³
θi−θ
1−θiθj σij +

θj−θ
1−θiθjσij

´´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ +

³
θ1−θ
1−θ21σ

2
1 +

θ2−θ
1−θ22σ

2
2 +

³
θ1−θ
1−θ1θ2σ12 +

θ2−θ
1−θ1θ2σ12

´´
Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
= θ +

θ1−θ
1−θ21σ

2
1 +

θ2−θ
1−θ22σ

2
2Pn

i=1

³
σ2xi + 2

Pn
j>i σxi,xj

´
Furthermore, the sign of the bias is positive as soon as the more persistent sec-

toral components are at least as volatile as the less persistent components (sufficient
condition).

1.2.3 A counter-example

In what follows, we reproduce a counter-example suggested to us by Charles Engel.
It goes as follows. There are three processes, x1, x2, and x3. Assume x1 = −x2, and
both are AR(1), which means:

x1t = θ1x1t−1 + εt

x2t = θ1x2t−1 − εt

and x10 = −x20. In this case, x1 + x2 = 0. x3, in turn, is given by:
x3t = θ3x3t−1 + ηt
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with arbitrarily low θ. In this case, it is possible that cross-sectional aggregation gives
rise to a negative bias. With similar notations to the ones introduced earlier, we have

xt =
1

3
(x1t + x2t + x3t)

=
1

3
x3t

Thus, we find immediately that the OLS estimate of the aggregate persistence is
given as:

θa = θ3

Since θ = (2θ1 + θ3) /3 we then get that:

θa − θ =

θ3 − (2θ1 + θ3) /3 = 2

µ
θ3 − θ1
3

¶
Therefore

θa < θ as soon as θ3 < θ1

If we go back to the general proof we note that this case corresponds to a very
particular case with:
n = 3, θ1 = θ2 > θ3; σ12 = −σ21 < 0; σ23 = 0;σ13 = 0.

θa − θ =
∆Pn

i=1 σ
2
xi
+ 2

Pn
i<j σxi,xj

with ∆ =
Pn

i=1
θi−θ
1−θ2i σ

2
i
+
Pn

i<j

³
θi−θ
1−θiθjσij +

θj−θ
1−θiθjσij

´
∆ =2 θ1−θ

1−θ21σ
2
1 +

θ3−θ
1−θ23σ

2
3 + 2

θ1−θ
1−θ1θ1σ12 =

θ3−θ
1−θ23σ

2
3

So

θa − θ =

θ3−θ
1−θ23σ

2
3

2
σ21
1−θ2i

+
σ23
1−θ23 + 2

σ12
1−θ1θ1

=

θ3−θ
1−θ23σ

2
3

σ23
1−θ23

= θ3 − θ = 2

µ
θ3 − θ1
3

¶

Which is exactly what we found before. This particular counterexample is of
type b) of the necessary conditions described above. It is clearly a very extreme case
and the conditions underlying it (66% of the prices constituting the index perfectly
negatively correlated and more persistent than the remaining 33% of the prices) or
any conditions remotely resembling these ones are far from being found in price
data. Sectoral prices tend to be moderately positively correlated and whenever a
subsample is moderately negatively correlated, its persistence is far from dominating
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the persistence of the other sectoral prices constituting the index. Finally, we notice
that the covariance matrix of the panel estimator would be singular in this case. We
have not encountered problems with singularity or near singularity in the estimation.
We conclude that these types of counter-example (and for that matter other

counter-examples that could be built using necessary conditions of type a)), although
interesting in theory, are not relevant in our application.
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